If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+24.75x=0
a = -4.9; b = 24.75; c = 0;
Δ = b2-4ac
Δ = 24.752-4·(-4.9)·0
Δ = 612.5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24.75)-\sqrt{612.5625}}{2*-4.9}=\frac{-24.75-\sqrt{612.5625}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24.75)+\sqrt{612.5625}}{2*-4.9}=\frac{-24.75+\sqrt{612.5625}}{-9.8} $
| 4-2(3x+2)=32 | | 9((135-3x)/5)+7x=279 | | 15=t-756/11 | | 3(2x–1)+7=-44 | | p=(140-4p)/4 | | 971=26b+61 | | f/10*277=256 | | u+95/16=0 | | 4=x-32 | | 6x-2=84+32 | | -26-3a=5(a-2) | | 8(g+66)=-40 | | -k-(1+5k)=-4-7k | | -3(n-3)=-5n-5 | | 36=9(c-85) | | 2-t/3=-4 | | 8(2x)=17 | | Y=12x+62 | | -61=8-1÷3(12w+42)-w | | 100=-5x+50 | | 6(s-82)=12 | | -41=-2÷5(45n+60)+n | | b+32/6=10 | | 20+0.5y=y | | p+23/6=5 | | 2/3x-1/6x=56 | | 5(d+4)=100 | | -4(v-74)=-80 | | -3(-6v+5)-8v=4(v-5)-3 | | -3d=20 | | F(-3)=-8-6x | | z/3=2=7 |